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Abstract A retined first-order shear-deformation theory 1s proposed and used to solve the plane-
strain bending problem of both homegeneous plates and symmetric cross-ply laminated plates. In
Reissner Mindlin's traditional first-order shear-detformation theory (FSDT). the displacement ficld
assumptions include a linear inplane ¢isplacement component and a constant transverse deflection
through the thickness. These assumpt:ons are retained in the present refined theory. However. the
associated transverse shear strain derived from these displacement assumptions, which is still
independent of the thickness coordinate, is ecndowed with new meaning-- the stress-weighted average
shear strain through the thickness. The variable distribution of transverse shear strain is assumed
in such a way that 1t agrees with th2 shear stress distribution derived from the integration of
equilibrium equation. This paper introduces the effective transverse shear stiffness of plates by
assuming that the normalized distribution of through-the-thickness transverse shear stress remains
unchanged regardless of geometrical configuration (span-to-thickness ratio) for plane-strain bending
problem. which is justified by the exact elasticity solution. Without losing the simplicity of the
displacement field assumptions of Reissner-Mindlin's FSDT. the present refined first-order theory
not only shows improvement on predicting deflections but also accounts for a variable transverse
shear strain distribution through the thickness. In addition. all the boundary conditions, cquilibrium
equations. and constitutive relations are satistied pointwise. Comparisons of deflection. transverse
shear strain. and transverse shear stress obtained using the present theory are made with the exact
results given by Pagano

INTRODUCTION

While composite materials offer advantages over conventional materials, they also pose
challenging technical problems in predicting their structural response. One inherent feature
of composite laminates 1s that the transverse shear modulus is lower than the inplane
moduli, and as a result. the influence of transverse shear deformations becomes significant
as the plate thickness increases. Classical plate theory predicts the response of thin isotropic
plates with reasonable accuracy, vet it usually fails to vield similar accuracy for composite
plates of similar contiguration.

The first-order shear-deformation theory (FSDT) proposed by Reissner (1945) and
Mindlin (1951) assumes that the inplane displacement field is linecar and the transverse
deflection field is constant through the thickness. 1t results in a fairly accurate global
response for isotropic materials when used with an appropriate shear correction factor,
even though a parabolic transverse shear strain distribution through the thickness is not
described. Yang ef al. (1966) extended this theory to laminated plates, followed by many
variants of the first-order theory. Reissner (1985). Noor and Burton (1989), Reddy (1990)
have reviewed these developments. Extension of FSDT to laminated anisotropic plates has
not been as successful as it has been ror isotropic plates- - particularly for the recovery of
the interlaminar stress state without integrating the equilibrium cquations. It is also difficult
to determine properly the shear correction factor of laminates, upon which the accuracy of
the prediction of FSDT is strongly dependent.

Many theories have been developed to overcome the deficiency of FSDT --a constant
or uniform transverse shear strain distribution through the thickness. Whitney and Sun
(1973) proposed a sccond-order theorv. which allows a linear variation of transverse
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shear strain through the thickness. Various third-order theories that lead to a parabolic
distribution of transverse shear strain through the thickness have also been developed [e.g.
Lo er al. (1977): Murthy (1981) . Reddy (1984)]. For both homogeneous and laminated
plates, the transverse shear stresses arc continuous through the thickness of the plates
according to elasticity theory. However, the transverse shear strains in laminated plates,
unlike those in homogencous plates, generally exhibit discontinuities at layer interfaces due
to dissimilar properties of neighboring layers. In that sense, most higher-order theories are
inadequate because they either lead to or are based on continuous transverse shear strain
distributions through the thickness of the laminated plates. As a result. a postprocessing
procedure is usually required to recover the actual interlaminar stress state by integrating
the equilibrium equations. Babuska er al. (1992) presented a hierarchic modeling approach
which can be expanded depending on the goals of computation and regions of interest.
Unlike most higher-order theories. the displacement field in their hierarchic theory is
assumed to have an exponential nature with the precise form determined by satisfying the
equilibrium equations in the transverse direction to the required degree of accuracy. Layer-
wise theories [e.g. Reddy et al. (1989): Toledano and Murakami (1987)] have been
developed which usually assume separate displacement field expansions within each layer
and thereby provide a more kinematically correct representation of the strain field in each
discrete layer of the laminate and also allow accurate ply-level stresses to be determined.
However, since the number of independent field variables is directly proportional to the
number of plies in a laminate, the application of a layer-wise theory can be computationally
prohibitive when used te model realistic structures and thus is usually applied only in local
domains of interest. Finite element formulations based on layer-wise theories are used only
in a global-local fashion—the global domain is modeled by FSDT while the local domain
of particular significance is modeled using a layer-wise theory.

The first-order shear-deformation theory, from an engineering point of view, is still
the most attractive approach due to its simplicity and low computational cost. 1t is well
recognized that while FSDT is adequate for global structural behavior (e.g. transverse
deflections, fundamental vibration frequencies. critical buckling loads. force and moment
resultants), it is not adequate for accurate prediction of local response parameters, such as
the interlaminar stress distributions wherein the transverse shear strains derived from the
displacement field assumptions are evenly distributed or uniform through the thickness.

In this paper, a refined first-order deformation theory is presented and used to solve
the plane-strain bending problem of plates as a justification. The present refined theory
retains the basic displacement assumptions of Reissner-Mindlin’s traditional FSDT (i.e.
inplane displacement varies linearly and the transverse displacement is constant through
the thickness). The transverse shear strain derived from these displacement assumptions
remains constant or uniform through the thickness and is referred to herein as the nominal
uniform transverse shear strain. This term is shown to be the transverse-shear-stress-weigh-
ted-average transverse shear strain through the thickness based on the equivalent shear
strain energy. The actual transverse shear strain distribution in the present refined theory
1s no longer assumed to be uniform, instead, it exhibits a variable distribution which
correlates with the actual transverse shear stress distribution in a constitutive relationship
sense. For an isotropic plate, the transverse shear stress distribution through the thickness
takes a parabolic form when obtained by integrating the equilibrium equation. Hence the
transverse shear strain should exhibit a parabolic form since it may be recovered from the
shear stresses through the use of the constitutive relations. However, it is more common to
obtain the transverse shear strain by using the strain-displacement relation which gives a
uniform distribution through the thickness. and hence a uniform transverse shear stress.
This contradiction within the traditional FSDT which has been plaguing this theory ever
since it came into being is removed in the present refined theory. For plane-bending problem
of plates, the normalized distribution shape of transverse shear stress is assumed to be
independent of the geometric configuration of the plate and external loading type or
distribution. With such an assumption, the shear strain distribution is modelled and related
to the nominal uniform transverse shear strain based on the equivalent shear strain energy.
A shear correction factor is not involved. The novel concept of effective transverse shear
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stiffness. is introduced us the counterpart to bending stiffness. As such, a new vitality is
offered to FSDT without losing its simplicity. Furthermore. the refined theory not only
accounts for the correct through-the-thickness transverse shear strain distribution which
may be continuous or discontinuous but also satishes pointwise all the equilibrium equa-
tions. constitutive relations and boundary conditions for plates made of either isotropic or
anisotropic materials,

IHFORETICAL ANALYSIS

This paper focuses on the plunz-bending problem of semi-infinite simply supported,
symmetric cross-ply laminated plates. As illustrated in Fig. 1, the geometry of the plate has
a total thickness of 2/rin Z direction. a span of length L in X direction and an infinite length
in Y direction. The platc is relatively thin for which the displacement assumptions of FSDT
generally hold (further discussion is included later). A lateral loading p(x) in XOZ plane is
applicd. Discussions of 1sotropic and homogeneous plates are also included as special cases
of laminated plates.

A nondimensional parameter [ s introduced for the thickness coordinate and is given
by

Jel-1.1]. (0

Reissner Mindlin's traditional FSDT requires the following form for the displacement
field with the midplane displacement in the X direction being zero
v (X, 2) = z0()
v(x.D) = () 2)
where ., w. are displacements 1 the X, Z directions. respectively, and 6 is the rotation

angle about the Y axis inormal to the page).
The strain ticlds derived rom these displacement assumptions are expressed as

i,
o= o = :()‘
[BRY
i, (u
o= . 4+ L =04 (3)
(z ‘X

where a subscript comma denotes diffcrentiation with respect to that independent variable
ensued.

The linear form ol & eqn (3) .5 known to express sufficiently the actual distribution
of the inplane normal strain. However., the transverse shear strain so obtained is uniform
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or constant through the thickness and does not adequately represent the actual transverse
shear strain distribution. The transverse shear strain given in eqn (3), denoted by .. for
distinction. 1s reterred herein to as the nominal uniform transverse shear strain. The nominal
7. and displacement field variables ¢ and w are hence

uniform transverse shear strain -
related by egn (3).
For this class of problem. the generalized Hooke's law can be written for the kth layer

ol the lammate as

jos e s 0 ‘“{ &, \(
7. = ¢y Cya 0 § e ; 4
LT ' 0 0 s e

where the strain components are the actual ones. The actual transverse shear strain herein
is denoted by ;.. and should be distinguished from the nominal uniform transverse shear
strain 7. given in egn (3).

The transverse normal stress .. which is rather small compared to the inplane stress,
is neglected. Further comments related to this assumption will be made in the discussion
of results. As u consequence. the inplane normal stress for the kth layer can be obtained
from egn (4 as

("‘llr\:'): -
G = , (,.l/\]x __ Cofeo= (IAl)‘,_’.\q (5)

In order to determine the transverse shear stress, one of the equilibrium equations with
the body foree neglected, namely.

=0 (6)

15 used. Egn (6) with eqns (3) and (35). plus the boundary condition that the outer surface
of the plate have no transverse shear stress vields

~h (‘\O' h
Ty =1 v+ S d = [ =0 . 0% d:-. @)
‘s

v v

Or i terms ol the nondimensional parameter  in the thickness direction,

"
T =0 | (O dL (8)

Iy

Introducing a distribution shape function of transverse shear stress as

t Lyt dy
e )

=10 .
j nQ' d'7> dg

where T'v) 1s the shear stress resultant given by
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The coefficient 4.3 is employed in order to simplify the distribution function. which
will be evident soon. The integral in the denominator of eqn (9) evaluates to some constant
and the integral in the numerator evaluates to a continuous piecewise quadratic function—
it is quadratic within each layer and continuous at the layer interfaces. Thus the distribution
shape of transverse shear stress, expressed by its distribution shape function of variable {
only, can be described by a continuous piecewise quadratic function. This distribution
shape will be illustrated in the Numerical Results and Comparison Section. For the isotropic
or homogeneous case, where Q1 is constant and simplified to @, the transverse shear
stress distribution shape function has the well-known parabolic form through the thickness

H(O=1-C (D

which agrees with the surface traction-free boundary conditions.
The distribution shape function of transverse shear strain. /.(¢), can be determined
using the constitutive relation and the shear stress distribution shape function. That is.

H)
. I H.({)
HQ = 7 = . (12)
3 Hr(‘:Jd“ 5“?5’
A

o

where S is the effective rransverse shear compliance of the plate, or more appropriately
the transverse-shear-stress-weighted-average transverse shear compliance of the plate and
defined as

R
- ,;(,A.l)d" ‘
o 3 HAD .
S=a Ty Lo de. (1
[ H(Hdo

v

For isotropic case, the effective transverse shear compliance of the plate can be shown to
be the reciprocal of the shear modulus of the matertal.

The distribution shape function of transverse shear strain. H.({), is also piecewise
quadratic through the thickness. However, it generally is discontinuous at dissimilar layer
interfaces due to different values of ¢! for laminated plates. For isotropic plates, the
distribution shape function of transverse shear strain also simplifies to the expression

H()=1-0" (14)

Hence the through-the-thickness distributions of transverse shear stress and transverse
shear strain are consistent. Unlike in the traditional FSDT, no inconsistency with the
constitutive relation exists in the present refined theory. since the transverse shear strain
takes the same parabolic distribution form as its stress counterpart.

Both distribution shape functions of transverse shear stress and shear strain. H.(J) in
eqn (9) and H.() in eqn (12} are normalized in the sense that
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which accounts for why a factor of 3 4 or 4,3 appears in eqns (9), (12) and (13).

Assumc the effective magnitudes of transverse shear stress and shear strain are denoted
as T and 7. respectively, then the actual transverse shear stress and shear strain through
the thickness are expressed accordingly as

T2 = () H A
o D) = o HAD. (16)

For isotropic plates where H.(J) und H.({) take the special parabolic form as expressed
by eqns (11 and (14). £ and 7" are their respective magnitudes, or the maximum values.
Otherwise. the effective magnitudes are expected to differ from their corresponding peak
values.

The total transverse shear energy €, through the thickness is expressed as

.
Uix) =

.

T AX, Oy (X, DR AL (17)
Using the definition given by eqn (16). the transverse shear strain energy takes the form

|
Ux) = llir‘\“’.’(,\');"\"f'(.\‘) [ H(OH.({)dS. (18)
1

Y

On the other hand. the transverse shear strain energy can also be expressed in terms of the
average shear strain. Namely.,

I

1
Coaxy =70 |t (L Dhdd = i/zf.:(x)r‘;';'(x)f H () dC. (19)
—1

|
V !

Equating these two transverse shear strain energy expressions (U, = U,) and solving
for the nominal uniform transverse shear strain 7. give

™ ™

[ENEEENERI ] HAOH) A

) Jo

ST e, (20)

™1 ™1
( r O dl H.(O)de
1

Y

v |

Alternatively. the ratio of transverse shear strain effective magnitude 757 to the nominal
uniform shear strain =, is
"
| o
<Y Jo
p=t e 21
“‘ g ('\ ) [ v o v
H(OH.({)dC

W

For sotropic plates. the value of /. can be shown to be 5/4.
The final expressions for the actual transverse shear strain and shear stress are, respec-
tvely
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and

/A AN

v 2
¢ H (D). (23)

Ty =T THA(D =

It follows that the transverse shear stress given by ¢gn (23) is continuous and piecewise
quadratic through the thickness since H.(J) 15 continuous. Likewise the transverse shear
strain given by eqn (22) is only piccewise quadratic because of the discontinuity of H.({) at
dissimilar layer interfaces. Such a result agrees with elasticity theory.

Using the actual transverse shear strain and stress expressions given by eqns (22) and
(23). respectively. the actual shear strain energy (' can be also expressed as

|
U= } MTAUING S AU Y/ X

o |

+

N o
- lh/' ‘ CEH () dl

SN = TN (24)

which depends only on the nomimal umform transyerse shear straun 7, and a4 new parameter
F that is defined as

+ o

F=hf AUH (AL = O] hdd (25)

The parameter Frepresents the effeciive transverse shear stiffness — a counterpart to bending
stiffness. It is interesting to compare cgns (24) and (25) with the expression of bending
strain energy

(X)) = 1D ) (26)

and the definition of bending stiffness

™l
D= | QW) hd! (27)

1
.

where x (x) i1s the inplane strain curvature. The expression of transverse shedr strain energy.
eqn (24). is analogous to that of bending strain energy. eqn (26). The definttion of effective
transverse shear stiffness. eqn (25). 1s itkewise analogous to that of bending stiffness. eqn
(27). Both ¢ in eqn (25) and Q') in eqn (27) arc clastic stiffness coefficients. The term
SH () in eqn (25) can represent the distribution shape of transverse shear strain [ie.
AN O = LH (D7 (V)] whereas the term A in egn (27) represents the linear distribution
form of the inplane normal strain due to pure bending [ie. o)) = Adn (V)]
Again for isotropic material where

fo=Sd0 H) = 1= V=6 -= (28)

the effective transverse shear stiffness £1s given by

SAS 33-1-E
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F=ht"| ¢NHI(Od = 2hG (29)

and the transverse shear strain energy is accordingly given by

L) = P () = 1x (C)2CRGT). (30)

'

This result coincides with the widely accepted transverse shear strain energy expression
with a shear correction factor equal to 5:6.

The following summary is made in retrospective at this point. The nominal uniform
transverse shear strain 7. derived based on FSDT displacement assumptions is actually a
weighted-average transverse shear strain through the thickness. and the weighting function
is the corresponding transverse shear stress. Alternatively. the nominal uniform transverse
shear strain, expressed by eqn (20). has been shown herein to be the stress-weighted average
shear strain through the thickness based on the equivalent shear strain energy. Actual
transverse shear stress and shear strain are both assumed to vary through the thickness and
are consistently related by the constitutive relationship. Their distributions can be expressed
by their respective effective magnitudes and distribution shape functions as given by eqns
(22) and (23). Their effective magnitudes are related by the cffective transverse shear
compliance of the plate.

Specifically for an isotropic material. the shear stress distribution shape function and
werghting function is

H()y=1-_". (31)

As such. the nominal uniform transverse shear stram becomes

~| )

(1= de

(e dg

TN = = S =ty (32)
! H(O)d! 1 (1=2d!

J R

In some sense. the present approach is analogous to Tessler and Saether’s (1991) treatment
of transverse deflection for 1sotropic matcrials. which takes the form

WAV D) = )+ e (V) (= D (v) (33)

wherein w(x) 1s the weighted displacement average [see Reissner (1950)]

~l
(1 e O de
3
wiy) = : N :;1 (1= (.0 dl (34)
| oo o

For the purpose ol demonstrating the validity of the present refined theory, we now
come to a special plane-strain bending problem- cylindrical bending problem of ortho-
tropic plates for which Pagano (1969) developed an exact elasticity solution. Assuming the
lateral load is p(.v) and neglecting transverse normal strain encrgy. the total potential energy
per unit length in the Y direction 1s expressed as
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where U, is the bending cenergy through the thickness and the bending stiffness D (or D)
15

[ = N O N (36)
The Euler Lagrange cquations from the total potential energy functional given by eqn
(35) are

DO+ Fw =0y =0
Fov o+ = —p (37)
which are similar to the expressions of Timoshenko's beam theorv except for the newly

introduced effective transverse shear stiffness £
The Euler Lagrange equations n:ay be uncoupled to gne

d o
Do = p
dyv
D d
/)d ! =p _(( /)) (38)
d\'J ! vy

Clearly the transverse shear effect w il disappear when p(vy is either uniform or linear
function of x. In such cases. the plates have a tendencey to only translate or rotate and the
overall transversc shear strain through the thickness section will be zero. The corresponding
deflection and rotation expressions may be derived using eqns (37) and (38) plus appropriate
boundary condition. As the distribution shape functions of transverse shear stress and
shear strain can be obtained from the »nlate material configuration. the actual through-the-
thickness transverse shear stress and shear strain can be readily determined.

NUMERICAT FEESULTS AND COMPARISON

The exact solution for cvhindricil bendig problem of cross-ply laminated plates
proposed by Pagano (1969) 15 used as the benchmark solution for the present refined theory.
Comparisons of deflection results with the exact solution w, are made with

(1) Solution by present retined first-order shear deformation theory emploving effec-
tive transverse shear stiffness. denoted by we

(2) Classical solution with shear deformation neg
shear stiffness to be intinity. denoted by w

(3) Solution by Reissner Mindin's traditonal FSDT using average transverse shear
modulus and assuming 5 6 as the shear correction lactor. denoted by w,.

(4) Solution by Ressner Mindi's traditional FSDT using average transverse shear
modulus and assuming the shear cor-ection factor to be .o denoted by

ceted. or. assuming the transverse

AN

The ply material properues corresponding to o tvpical carbon epoxy materials are
taken as



SR v Qiund NOF.Knight, Jr.

Tabic I Laminate detinitions

No ol L cis Staching sequence D iin.-ib) Fn.-lh) F, (in.-1b)
| 0] 0.261 2083 2083
4 [90 0. 2,672 5051 5833
16 0 0, ERDR 18620 23330
16 V0090 0] 2794 15930 23330

£, = 25 <10 psi £, = 10°psi

G, =03 00 psi Gy, =0.2x10° psi

(4

. - - )
Ve o=y, =02

(39)

where L and 7 denote he longitudingl and transverse ply material directions, respectively.
Using these properties. four laminates are considered. For each case, the layer properties
are given in egn (39). and each laver is assumed to have the same thickness—0.005 in, while
the plate span varies so that the ratio of span-to-thickness. R = L 2/i. takes on values 4, 10,
20 and 30. respectivery

In Table 1. D s defined by egn (30). F by egn (25) and £, 1s the average effective shear
stilfness detined by

I - cdds (40)

which agrees with Reissner Mindlin's traditional FSDT if a shear correction factor of 5/6
is used. Arerage means that the stacking sequence 1s not taken into account. while effective
means that the conventional shear correction factor 5.6 1s used.

The single-layer plate is obviously the representation of homogeneous case which also
includes the isotropic plate s a specific one. The two 16-ply plates have the same value for
F, in Table 1: however. they have significantly different values for the effective transverse
shear stiffness F. since the latter parameter takes stacking consequence into account, just
like the bending stifiness.

For cvlindrical bending problem. the luteral load s assumed to have the form

A A%
PO = py SIN L
A
ply. )= = pysin 41)
- L
and the corresponding boundary conditions are
w00 M =0 atv=10. L. (42)

The analvtic solution is readily obtwmed and given as

poid iy D /n\
win) H [\‘ i j \111( / )( I+ F (l) ] (43)

and
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vy = Lo { ) CON . (44)
p\n I.
The nominal unitorm transverse shear straar is then
il Ay
TNy = = /[‘ ( )uo.\ . (45)
ol /.

The actual distributions of transverse shear strain and shear stress can be expressed as,
respectively

o a f TN Y
s s @ = e[ HG) (46)
and
v =t D) = ’S' /;' ([L )cos( {;\‘k\)l/_.(ﬁx (47)

The transverse shear stress resultant derived from eqn (47) can be shown to be precisely
the same as that obtained from an elasticity analyvsis.

For the classical solution in which the effect of truansverse shear deformation is neglecied
[i.c. F approaches infinity in eqn (43)] the corresponding expression for the transverse
deflection at the midplane ot the plate 1s given by

coo=t N

If Fin eqn (43) 15 replaced by 77, defined by egn (40). the result for the traditional
FSDT is obtained with the sheuar correction factor equal to 3 6. That is,

INETI (i) i (;‘)| I ;) (;) l (49)

In case that the shear correction tactor s assumed (o be [instead of 3/6. the corresponding
result 1s

2
4 (,/ ) ' (50)

The exact solution tor such cylindrical problem iy olving a cross-ply laminate proposed
by Pagano (1969). although not as simple as the above expressions, can be expressed as

-;‘ . [{“‘ ;_‘ 3
N (R‘l"l ST X (Mm,2)
= n,oy

in”"" (5H
IR sin 5
L

and the exact value of the mudplane deflection (at DINN
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Fabbe 20 Midplane center transverse deflection comparison in per-
centerror for the single [0] layer

o - . -

N N W i, W

4 3 7578 31y —9.80

P 0o 32R4 0.39 —5.1s

NE 0o’ - 10.94 0.07 - 1.76

K 0.0l 192 0.01 —0.31
Fenle 30 Midphane center transverse deflectton comparison in per

cent error for the [90 0f laminate

/! d i i, Wi

4 24 43.00) -3.74 —10.39
I 0.9 1120 -1.27 -294
2 non” 310 0.36 —0.82
St 0 0.5 0.06 —0.14

Fable 4 Mudplane center transverse deflection comparison i per
cent error for the (90 0, laminate

I i 1 w, W

-+ 2ol 06982 - 12.50 ~22.06
0 028 273 ~5.32 —8.99
20 0,06 - 8.64 1.70 —2.85
S0 Lol 149 -0.29 —0.49

Tarle s Mudpline center transverse deflection comparison in per
cent error for the [90. 0,90 0] laminate

R v i ", W,

- 440 61,32 16.67 ~24.11

Ie 041 2096 - 6.37 - 8.80

2t [IRTIN 626 1.93 —2.65

3 0ol 1.06 ~().33 —0.45
: / RYY 7o\ . ax

Wy =0y = N ( RV — - Tx | lsin- . (52)

= \ m, [ L

The readers are referred to Pagano (1969) for the tull meaning of all terms involved in
eqns (A1) and (32).

All deflection expressions tiuke the same sinusoidal form along the X direction. The
percent error in the midplane transverse deflection at the center of the plate for each
approach compared with the exact value given by egn (52) are obtained. Namely,

1 1
i " x 100% (33)

"

where the subseript 7 represents cach approach (7= p for the present refined theory; i = ¢
for classical plate theorv: 7 = for Reissner Mindlin's traditional FSDT with a shear
correction factor of S ocand 7 =l for the traditional FSDT with a shear correction factor
of ). Results are presented in Tables 2 3 for cach laminate defined in Table 1.

Results tor the single orthotropic laver are shown in Table 2. The present refined
FSDT. as anticipated. gives transverse deflection results identical to those of Reissner—
Mindlin’s traditional FSDT with a sheur correction factor equal to 5/6. Even for thick
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plates (R = 4). the present theory and the traditional FSDT are very accurate. Results for
the 4-layer cross-ply laminate are shown in Table 3. The present theory is the most accurate
one of the results presented and is within 3% of the exact transverse deflection for the thick
plate (R = 4). Results for the two 16-layer cross-ply laminates are given in Tables 4 and 5
and again indicate the improved accuracy ftor the present refined theory. The advantage of
present theory is more pronounced tor thick plates where the transverse shear deformation
effect becomes more important. The reason is rather clear: the present refined theory
employs more accurate transverse shear strain energy expression.

It 1s assumed in the previous discussions that normalized distribution of through-the-
thickness transverse shear stress remains independent of the span-to-thickness ratio. Such
an assumption can also be justified by Pagano’s exact solution. All four laminates are
examined. vielding conclusive results. Two sets of the results are provided in Fig. 2. The
short- and long-dashed hines represent the exact results for two values of the span-to-
thickness ratio (R = 4. 10. respectively), and the solid line. denoted by Present. stands for
the results predicted by the present refined theory and determined using eqn (9) for both
values of R. The location in the X direction is taken as x = L/4. However, the location in
X direction makes no difference in the transverse shear stress comparison except at the
middle span where the transverse stresses vanish identically.

[t can be seen that even for thick plates (R = 4). the assumed distribution can be taken
as a4 good approximate expression. When the plate becomes moderately thick (R = 10),
only shight difference exists between the actual distribution and the assumed one. As the
plate becomes thinner and thinner (i.e. R — »). the distribution will converge to the
assumed one. Results for thinner plates (e.g. R = 20. 50). which are not depicted for the
sake of clarity. fall between the curve for R = 10 and the present assumed result. The
assumption that the normalized distribution of through-the-thickness transverse shear stress
is independent of the span-to-thickness ratio, especially for the plates not too thick (R > 4)
can be concluded to be reasonable. Even for thick plate (R = 4). this assumption also leads
to a good acceptable approximation. Since the present refined theory provides precisely
exact transverse shear stress result as mentioned previously, Fig. 2 also represents the
comparisons between transverse shear stress distributions obtained by present theory and
the exact ones by Pagano’s solution for R = 4, 10. respectively.

The transverse shear strain results using the present refined theory, eqn (46), are also
compared with the exact values and the nominal uniform shear strains as illustrated in Figs
3 and 4. Transverse shear strain comparisons for the single-laver case are shown in Fig. 3.
Unlike in the traditional FSDT. the actual distributions of the transverse shear strain are
not uniform through the thickness. instead they take the same form as those of the transverse
shear stress for homogencous plates (compare Fig. 3 with Fig. 2). Results for one 16-laver
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Fig. 2. Normalized transverse shear stress distribution vs nendimensional thickness coordinate.
1) For single [0] faver and (b) for [90, 0, 90 0], laminate.
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laminate are shown in Fig. 4 where the actual distributions of shear strain exhibit enormous
diversity. For anisotropic laminated plates. transverse shear strain is neither uniform nor
continuous. It shows distinet discontinuity at the dissimilar layer interfaces. Any attempts
o assume 1Uis continuous. much less unitorm or evenly distributed, are expected to lead to
Inaccuracies.

The present refined theory. however. rather successtully predicts transverse shear strain
distributions. as well ax shear stress distributions illustrated in Fig. 2. When the plate is
moderately thick (R == 10y, sutliciently uccurate results are obtained by the present refined
theoryv. Results tor thin plates (R == 20. 30) approach those of the present theory and any
differcnces would not be detected if plotted. Even for thick plates (R = 4). the prediction
using the present theory is acceptable.

[t is widely recognized that for thin plates (R > 50 or so). both transverse shear and
normal strains can be neglected. and thus the application of classical plate theory generates
satistactory global predictions. When the plates become moderately thick (R is between 10
and 50 or <o) the transverse shear effect should be taken into consideration while the
transverse normal stramn is still negligible. As the plate thickness increases further, the
transverse normal strain becomes more important and should be included in the formu-
lation. Usualls FSDT and its vuriants are not appropriate for thick plates (R = 4 or s0).
Therc are attempts to modity the transverse deflection form of FSDT to include transverse
normal strain. lorexample. assuming quadratic form of transverse deflection in the thickness
direction. However, the crror introduced by assuming a linear through-the-thickness dis-
tribution ol inplane displacement which corresponds to a linear through-the-thickness
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distribution of the inplane stress 1s more significant than the error introduced by assuming
inextensibility in the thickness dircetion. This conclusion can be easily verified using the
exact solution from Pagano but is not included herein.

Even though applied to thick plates in the previous discussion for the sake of compari-
son. the present refined FSDT should be confined only to moderately thick plates where
the transverse shear eflect 1s important while the transverse normal stress can be assumed
to be negligible. In the domain of its validity. it has been shown to give accurate adequate
global response (transverse deflection) and local response (transverse shear stress and
transverse shear strain) prediction for the configuration considered in this paper. In
addition. the span-to-thickness ratio should be considered along with the wavelength of the
loading function. For a loading function with multiple halfwaves along the plate length,
the corresponding effective span-to-thickness should be related to the wavelength of the
load. The transverse shear effect iy still significant for a thin plate if subjected to a very
short-wave load.

SUMMARY

In the first part of this paper. the first-order shear-deformation theory is re-examined
and it concludes that the nominal uniform transverse shear stress derived directly from the
displacement assumptions is actually the stress-weighted average shear strain through the
thickness based on the equivalent shear strain energy. The novel explanation enables the
present refined FSDT to account for variable distribution of transverse shear strain that
Reissner-Mindlin’s traditional theory fails to do. The contradiction in the sense of consti-
tutive relationship is therefore removed between the uniform transverse shear strain derived
from the displacement assumptions and the variational shear stress obtained trom the
equilibrium equation.

In the second part. the validity of this retined theory is demonstrated by applying it to
solve cylindrical bending problems of plates for which exact results are available. Based on
the assumption that normalized transverse shear stress distribution through the thickness
remains unchanged. the actual distributions of transverse shear stress and sheur strain are
modelled which comply with boundary conditions. equilibrium equation and constitutive
relationship pointwise. Effective transverse shear stiffness and effective transverse shear
compliance of plates are proposed te predict the global response (e.g. deflection. transverse
shear stress resultant and nominal uniform transverse shear strain. and likely vibration
frequency and buckling load). On the other hand. the local response parameter. such as
the interlaminar transverse shear stress and strain distributions. can also be obtained using
their respective distribution shape functions.

The undertying explanation that the nominal uniform transverse shear strain derived
directly from the displacement assumptions is the stress-weighted average shear strain
through thickness enables the present refined theory to succeed not only globally but also
locally tor the plane-strain bending problems. However. it should be mentioned that for
general plate bending problems. the unchanged stress distribution shape assumption may
not hold and further research work i~ required.
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