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Abstract A relined iir,t-rlrdcr shc,lr-deformation thcor\ " IX<lposcd and uscd to s<)hc thc planc­
strain bending problcm of both honwgeneous plates and svmmetrie cross-ply laminatcd plates. In
Reissner Mindlin's traditional first-order shear-deformation thcory (fSDTI. the dlsplaccmcntlicld
assumptions include a linear inplane Gisplaccment component and a constant transverse deflectIOn
through the thickncss. Thcsc assumpt:ons are retaincd in the present refined theory. Howcver. thc
associated transverse shear strain derived from these dIsplacement assumptions. which is still
independent of the thickness coordmate. is endowed with new meaning the stress-weighted averagc
shear strain through thc thickness. The variable distnbution of transverse shear strain is assumed
in such a wav th~t it agrees with th: shear stress distribution derived from the integration Ilf
equilibrium equation TI1is paper Introduces the effective transverse shear stitTness o( plates b\
assuming that the normalized distribUilon of through-the-thickness transverse shear stress remains
unchanged regardless of geometrical configuration (sp,m-to-thickness ratio) for pbne-strain bcnding
problem. which is Justified by thc exact elasticity solution. Without losing the simplicity of thc
displacement field assumptions of ReissnerMindlin's FSDT. the present refined first-order thcor~

not only shows improvemcnt on predicting deflections but also accounts for a variable transverse
shear strain distributIon through the thickness. In additIOn. all the boundary conditions. equilibrium
equations. and constitutive relatiotl' we satisfied pointwise. Comparisons of deflection. transverse
shear strain. and transverse shear stres, obtained using the prcsent theory are made with the exact
results gi\en by Pagano

It\TRODU( 'n07'-

While composite materials otler ad\antages over conventional materials, they also pose
challenging technical problems in predicting their structural response. One inherent feature
of composite laminates is that the transverse shear modulus is lower than the inplane
moduli, and as a result. the inl1uence of transverse shear deformations becomes signiticant
as the plate thickness ltlcreases. Cla~stcal plate theory predicts the response of thin isotropic
plates with reasonable accuracy, yct it usually fails to yield similar accuracy for composite
plates of similar contiguration.

The first-order shear-deformatic'n theory (FSOT) proposed by Reissner (1945) and
Mindlin (1951) assumes that the inplane displacement field is linear and the transverse
deflection field is constant through the thickness. It results in a fairly accurate global
response for isotropic materials when used with an appropriate shear correction factor,
even though a parabolic transverse shear strain distribution through the thickness is not
described. Yang ef ill. (I %6) extended this theory to laminated plates, followed by many
variants of the tirst-order theory. Reissner (191\5). Noor and Burton (19X9), Reddy (1990)
have reviewed these developments. Extension of FSOT to laminated anisotropic plates has
not been as successful as it has been f'or isotropic plates particularly for the recovery of
the interlaminar stress state ""ithout integrating the equilibrium equations. It is also difficult
to determine properly the shear correction factor of laminates, upon which the accuracy of
the prediction of FSOT is strongly dependent.

Many theories have been developed to overcome the deficiency of FSOT -a constant
or uniform transverse shear strain distribution through the thickness. Whitney and Sun
(1973) proposed a seL'oncl-order theory. which allows a linear variation of transverse
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shear strain through the thickness. Various third-order theories that lead to a parabolic
distribution of transverse shear strain through the thickness have also been developed [e.g.
Lo et al. (1977); Murthy (1981); Reddy (1984)]. For both homogeneous and laminated
plates, the transverse shear stresses are continuous through the thickness of the plates
according to elasticity theory. However. the transverse shear strains in laminated plates,
unlike those in homogeneous plates, generally exhibit discontinuities at layer interfaces due
to dissimilar properties of neighboring layers. In that sense, most higher-order theories are
inadequate because they either lead to or are based on continuous transverse shear strain
distributions through the thickness of the laminated plates. As a result, a postprocessing
procedure is usually required to recover the actual interlaminar stress state by integrating
the equilibrium equations. Babuska ct al. (1992) presented a hierarchic modeling approach
which can be expanded depending on the goals of computation and regions of interest.
Unlike most higher-order theories. the displacement field in their hierarchic theory is
assumed to have an exponential nature with the precise form determined by satisfying the
equilibrium equations in the transverse direction to the required degree of accuracy. Layer­
wise theories [e.g. Reddy et al. (1989); Toledano and Murakami (1987)] have been
developed which usually assume separate displacement field expansions within each layer
and thereby provide a more kinematically correct representation of the strain field in each
discrete layer of the laminate and also allow accurate ply-level stresses to be determined.
However, since the number of independent field variables is directly proportional to the
number of plies in a laminate, the application of a layer-wise theory can be computationally
prohibitive when used to model realistic structures and thus is usually applied only in local
domains of interest. Finite element formulations hased on layer-wise theories are used only
in a global-local fashion--the global domain is modeled by FSDT while the local domain
of particular significance is modeled using a layer-wise theory.

The first-order shear-deformation theory, from an engineering point of view, is still
the most attractive approach due to its simplicity and low computational cost. It is well
recognized that while FSDT is adequate for global structural behavior (e.g. transverse
deflections, fundamental vibration frequencies. critical buckling loads, force and moment
resultants), it is not adequate for accurate prediction of local response parameters, such as
the interlaminar stress distributions wherein the transverse shear strains derived from the
displacement field assumptions arc evenly distrihuted or uniform through the thickness.

In this paper, a refined first-order deformation theory is presented and used to solve
the plane-strain bendmg problem of plates as a justification. The present refined theory
retains the basic displacement assumptions of Reissner-Mindlin's traditional FSDT (i.e.
inplane displacement varies linearly and the transverse displacement is constant through
the thickness). The transverse shear strain derived from these displacement assumptions
remains constant or uniform through the thickness and is referred to herein as the nominal
uniflmn transverse shear strain. This term is shown to be the transverse-shear-stress-weigh­
ted-average transverse shear strain through the thickness based on the equivalent shear
strain energy. The actual transverse shear strain distribution in the present refined theory
is no longer assumed to be uniform, instead, it exhibits a variable distribution which
correlates with the actual transverse shear stress distribution in a constitutive relationship
sense. For an isotropic plate, the transverse shear stress distribution through the thickness
takes a parabolic form when obtained by integrating the equilibrium equation. Hence the
transverse shear strain should exhibit a paraholic form since it may be recovered from the
shear stresses through the use of the constitutive relations. However, it is more common to
obtain the transverse shear strain by using the strain-displacement relation which gives a
uniform distribution through the thickness, and hence a uniform transverse shear stress.
This contradiction within the traditional FSDT which has been plaguing this theory ever
since it came into being is removed in the present retlned theory. For plane-bending problem
of plates, the normalized distribution shape of transverse shear stress is assumed to be
independent of the geometric configuration of the plate and external loading type or
distribution. With such an assumption, the shear strain distribution is modelled and related
to the nominal uniform transverse shear strain based on the equivalent shear strain energy.
A shear correction factor is not involved. The novel concept of etlectirc transverse shear
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stijfilC.II. is introduced CIS the counterpart to bcnding stiffness. As such, a new vitality is
offered to FSDT \\ ithout losing its simplicity. Furthermore. the refined theory not only
accounts for the correct through-the-thickness transverse shear strain distribution which
may be continuous or discontinuous but also satisfies pointwise all the equilibrium equa­
tions. constitutive relations and h(lundary conditions for plates made of either isotropic or
anisotropic matcrial-,.

I HI ORETIC\I .\."\\1 l SIS

This paper focusc\ 011 the pl~lI1:-bending problem of semi-infinite simply supported,
symmetric cross-pJ:, bmll1ated pbte,. As illustrated in Fig. I. the geometry of the plate has
a total thickness of~;' in 7 direeti(ln. a span of length L in X direction and an infinite length
in Y direction. The pbte is relatively thin for which the displacement assumptions ofFSDT
generally hold (further discusslOn is Il1duded later). A lateral loading p(x) in XOZ plane is
applied. Discussions ()f Isotropic and homogeneous plates arc also included as special cases
of laminated plates

A nondilllensinl1a] paralllctci : 1\ introduced tor the thickness coordinate and is given
hy

II
~E[-1.1]. (I)

Reissner \1indlll1'\ traditional FSDT requires the following form for the displacement
field with the midplanc dispbcement in the X direction being zero

(.(Y.'::) = .::O(y)

'/(Y. .::) = 11'( \) (2)

where 11\, II, arc dispiaccl11cl1h 111 the X. 7 directions. respectively, and 8 is the rotation
angle about the Y aXIs! 110rmal to the page).

The strain fields dCrI\cd from these displacemcnt assumptions are expressed as

( II,
= .::0

r.::

(/I, (/I

+-
( \

-~ 11-'-11 (3)

where a suhscn pt comma tlenotcs d I Ill. rcntia tion \\ it h respect to that independent variable
ensued.

The linear torm nt;. In cLjn (JJ ,s known tn cxpress suttlciently the actual distribution
of the inplane normal ,traIn. Howc\cI. thc transvnsc shear strain so obtained is uniform
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or constant lhwugh th~ :hickncss and does not adequately represent the actual transverse
shear strain distribution. The transverse shear strain given in eqn (3), denoted by Ye for
distinctIon. is r~ferred herein to as the lIol11inalllllij(mn transrerse shear strain. The nominal
uniform trans\~rse shear strain ~', __ and displacement field variables () and IV are hence
related b~ elJn (.I).

For this class of problem. the generalized Hooke's law can be written for the kth layer
or the Iamlllate as

I
u, t 11 C 1 , 0

r
1:,

IT c I ~ C" 0 L (4)
r ,_ (l 0 C.;;.:;

I ~·l

~ J \.:

where the strain components are the actual ones. The actual transverse shear strain herein
is denoted hy '" and :ihould be di:itinguished from the nominal uniform transverse shear
:itrain ~\ gm:n in eqn (J).

The transverse normal stress u. which is rather small compared to the inplane stress,
is neglected. Further comments related to this assumption will be made in the discussion
or results. As a consequence. the inplane normal stress for the kth layer can be obtained
from clJn 141 as

(5)

[n order tll determine the transverse shear stress, one of the equilibrium equations with
the hOlh rorce neglected, namely.

f(J \ ( r "-
+ - = 0

('.\ ( ::
(6)

is us~d. Fqn (6) WIth eqns (.I) and (5). plus the boundary condition that the outer surface
of thc pb tc h,1 \ C no t r<t nS\crsc shear stress yields

Or In terms or the nondimensional parameter sin the thickness direction,

r'1

T, 1\,;) = h20" JsQ\'1 d;.

Inlroducl11g a distribution shape function of transverse shear stress as

(7)

(8)

417
11\;) = 3Vlv) T,

, 1JI]QI/i dl}

(.\-.:) == - ---- ---------------

- ~rl(fryQ\'ldll)d;
(9)

where I i.l) h the SI1\:Cir stress resultant given b)
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(10)

The coefficient 4 3 is employed in order to simplify the distribution function, which
will be evident soon. The integral in the denominator of egn (9) evaluates to some constant
and the integral in the numerator evaluates to a continuous piecewise quadratic function­
it is quadratic within each layer and continuous at the layer interfaces. Thus the distribution
shape of transverse shear stress, expressed by its distribution shape function of variable'
only, can be described by a continuous piecewise quadratic function. This distribution
shape will be illustrated in the Numerical Results and Comparison Section. For the isotropic
or homogeneous case, where Q\'1 is constant and simplified to QII, the transverse shear
stress distribution shape function has the well-known parabolic form through the thickness

(11 )

which agrees with the surface traction-free boundary conditions.
The distribution shape function of transverse shear strain. H.(~), can be determined

using the constitutive relation and the shear stress distribution shape function. That is,

H,(')

c~k1
HC') =c -----

3 f' ~Ii) d V

4 "• I

H,((,)
(12)

where S is the eflecrire franSl'erse shear compliance of the plate, or more appropriately
the transverse-shear-stress-weighted-average transverse shear compliance of the plate and
defined as

(13 )

For isotropic case, the effective transverse shear compliance of the plate can be shown to
be the reciprocal of the shear modulus of the material.

The distribution shape function of transverse shear strain. H(O, is also piecewise
quadratic through the thickness. However, it generally is discontinuous at dissimilar layer
interfaces due to different values of c~'d for laminated plates. For isotropic plates, the
distribution shape function of transvelse shear strain also simplifles to the expression

H(,) = 1--; (14)

Hence the through-the-thickness distributions of transverse shear stress and transverse
shear strain are consistent. Unlike in the traditional FSDT. no inconsistency with the
constitutive relation exists in the present refined theory. since the transverse shear strain
takes the same parabolic distribution form as its stress counterpart.

Both distribution shape functions of transverse shear stress and shear strain. H,(O in
eqn (9) and H(O in egn (12) are normdlized in the sense that
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(15)

\\ hich accounts for \\hy a factor of J4 or 4;3 appears in eqns (9), (12) and (13).
Assume the effective magnitudes of transverse shear stress and shear strain are denoted

as and.,. respectively, then the actual transverse shear stress and shear strain through
the thicknes~ arc expressed accordingly as

I ,(\, ~) = r':;' (x)HT(O

;. (v.~) = /;':'(O';:)H(O. (16)

Fnr Isotropic plates where H.(~) and H«() take the special parabolic form as expressed
hy ellns ( I I) and ( 14). T,'" and are their respective magnitudes, or the maximum values.
Otherwise. the effective magnitudes are expected to differ from their corresponding peak
value,.

TIlL' tlHal tranS\L'Pie shear energy C through the thickness is expressed as

(17)

L sing l he deiini tion given hy elln (16). the transverse shear strain energy takes the form

U.(v) = ~hr\"'(v)'/:"(x) II HT(()H(O d(.
• I

(18)

On the llther hand, the transverse shear strain energy can also be expressed in terms of the
average shear strain. Namely.

(19)

Equating these lwo transverse shear strain energy expressions (U, = C,) and solving
for the 1ll1111inal uniform transverse shear strain -;, give

'I

I I .. CV, () d(
• I

1'1 HT(OH.(() d(
• I

---;j.. -- ----.-- },~,~,(x).

I HT(Od(
" I

(20)

Alternalively. the ;'atio of transverse shear strain effective magnitude "i~;' to the nominal
uniform shear strain ';. is

!
;,'" (x)

.; Lv)

1'1 HT(Od(
• I

,'I

I
H.(::,)H.(() d(

• I

(21 )

For hotrnplC plates. the value of! can be shown to be 5/4.
The tinal expressions for the actual transverse shear strain and shear stress are, respec­

ti\ely
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(22)

, (Y.,I= ':','''HLI
I C

(\)

'". flU (23)

It follows that the trans\C!'se shear ,tress gi\t~n h\ ~'LJn (23) is continuous and piecewise
quadratic through the thickness Sillce H,(;) is cOlltinuous. Likewise the transverse shear
strain given by eqn (22) is only piecewise quadratic because of the discontinuity of H (() at
dissimilar layer interfaces. Such a result agrees with elasticity theory.

Using the actual transverse shear strain and stress expressions given by eqns (22) and
(23). respectively. the actual shear strain energy l can be also expressed as

I 'J

l (\) = ~ I " IY.;)~' (Y. ;)lIlL
-" I

I I .
2[h/ 'F~C~(y) (24)

which depends only 011 the numillallllliiormtran,\~'rseshear stralll:" and a new parameter
F that is defined as

'I

F=hI-' c':ff(;)d~
'I

I
'I I /I (;)j II de:. (25)

The parameter Frepre~enls thc elii', rilc IWII.I/('I"ll',lIc(/rlli!!llcs\ a counterpart to bending
stiffness. It is interesting to Cllmpare cLJns (24) and (25) WIth the expression of bending
strain energy

(' (Y)

and the definition of bendmg stiffness

(26)

f) c 1'1 Q'I'IIII.llIll:
• 1

(27)

where 1\\(.\") is the inplane stram cun elture. The npression uftransverse shear strain energy.
eqn (24), is analogous to that of bending strain energ~. eLJn (26). The definition ofetfectivc
transverse shear stiffness. eLJn (25). IS iikewise analogou, to that of bending stiffness. eqn
(27). Both in eqn (25) and Q'i'i in eLJn (27) arc elastic stiffness eoeflicients. The term
f.H(;) in eqn (25) can represent the distribution shape of transverse shear strain [i.e.
;\c(x,;) = fH.( ();'JY)] whereas the term Ii; in eq n (2 7) represents the linear distribution
form of the inplane normal strain due '.0 pure hending [i.e (\.:J = 11;'1, (x)].

Again for isotropic material where

1= ~ 4. II (. I ( , (28)

the effective trans\t:rse ,hl'ar ,1Itlne" r IS gi\en h\

SA5 33-1-E
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F= hf: II
•.J !

(29)

and thl: transverse she.lr strain energy is accordingly givcn hy

l(v) =~F;'; (\) = ; X (~)(2h)G~';(v). (30)

This result coincide, with the widely accepted transverse shear strain energy expression
with a shear CII/Tecri'JI1 factor eq ual to :) 6.

The following summary is made in retrospective at this point. The nominal uniform
transverse shear strain ;oc derived hased on FSDT displacement assumptions is actually a
weighted-average transverse shear strain lhrough the thickness. and the weighting function
is the corresponding transverse shear stress. Alternatively. the nominal uniform transverse
shear strain. expressed by eqn (20). has heen shown herein to be the stress-weighted average
shear strain through the thickness hased on the equivalent shear strain energy. Actual
transverse shear stress 'lt1d shear strain arc hoth assumed to vary through the thickness and
are consistently relateel hy the constitutive relationship. Their distrihutions can he expressed
hy their respective effective magnitudes and distrihution shape functions as given hy eqns
(22) and (23). Their dfective magnitudes arc related hy the effective transverse shear
compliance of the plate.

Specifically for an isotropic material. the shear stress distrihution shape function and
\veighting function is

(31 )

As such. the nominal uniform transverse shear strain hecomes

'I

I (I-;C)d;
" 1

- (r) ==

.' 1

I

I
,' 1 f{( ;) lL

,

(32)

In some sense. the present approach h analogous to Tessler and Saether's (I LJ91) treatment
of transverse detleclit>n for isotropic materials. which takes the form

wherein \I(r) IS the weighted displacement average [see Reissner (ILJ:)O)]

(33)

( I

~I

j ( I

11'(\)
" 1

I

.11I(\.Jd;
. - -"'''1

=-'1 (1-;2)u(\.;)d;.
4" 1

(34)

For the purpose of demonstrating the validity of the present refined theory. we now
come to a special plane-strain hending prohlem cylindrical hending prohlem of ortho­
tropic plates for which Pagano (I LJ6LJ) developed an exact elasticity solution. Assuming the
lateral load is p(r) and neglecting transverse normal strain energy. the total potential energy
per unit length in the Y direction is expressed as
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[l = I ([ 1 +- C-PII)dl
",I)
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(1)- fill Id\ (35)

where [II, is the bending energ~ through the thick ill'S' ,iIld the hcnding stillness f) (or f)11)

IS

f' I -.(! .d: (36)

The Euler Lagrangc cljuatlOlb 110m thc total pOtL'1l11,i1ellergy functional givcn hy cljn
(35) are

[J(!.,+F(II +11) ()

F( II ,+ Ii I - f' (37)

which arc similar to thc cxprcssions Ill' Ti111oshenko', he~!m thl'orv except for the newly
introduced effective transverse shear stiffness F

The Euler Lagrangl' eLjuations n·a~ he unCllul1kd to ,'!l\e

d II
j) f'

(II

d 1\

f) = P
d \4

j) (d I')
/- (d I'

Clearly the transverse shear eHect \\ II disappear I\hl'n pCy) is either unilorm or linear
function 01'.\. In such cases. the plate, have a tel1lkne: to only translate or rotatc and the
overall transverse shear strain through the thicknes" section \\ill he lero. The corresponding
deflection and rotation expressions 111a\ he deri\ed w.,ing eqns (37) and (38) plus appropriate
houndary condition. I\S the distribution shape functions of transverse shear stress and
shear strain can be obtained 1'1'0111 the1late material contiguration. the actual through-the­
thickness transverse shear stress and shear strain Gin he readily determined.

's t \11 RI( ,xl ,. ESt L IS\ " I) CO xIf' \ RISO"

The exact solution for cvlindllc iI hendlng problcm Ill' cross-ply laminated plates
proposed by Pagano (196Y) IS uscd a' the benchmark solution for the present renned theory.

Comparisons of dctlcetiol1 results with th,' c\a,:t Sil!utl<ln II ~lre made with:

(I) Solution by preSl'nt refined fir,l-order shear dl'lormat1on thcory cmploying eHee­
tive transverse shear stIifness. (knoted h\ II

(:n Classical solution \\Ilh she~lr Jeformatilln lll'glcctnJ. ill. assuming the transvcrse
shear stIflnes~ to be lntllllt\. denoted hI II

(3) Solution by Rel~sner Mlndlll\ tradit1ilnai ISD'! using average transverse shear
modulus and assuming" (1 as the ~hl'ar correction lactor. dcnoted by 11'""

(4) Solution by Relssncr \1indlns tradItional ISDT using average transverse shear
modulus and assuming the shear co r--L''-'l 1on factllr til hL' I. denoted by 11'",1'

The pi: material propntiL's Clli n ,ponding til .1 II pIL',i1 Glrhon epo\: materials arc
taken as
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Llhk I Lll11llJalC ddinitlolb

'\ l \ l 11-1,1' L'i'" Stdl"\..lll~ 'l1...'ljUCllCl' f) ! in-Ih) Flill.-Ih) F. lill-Ih)

III I !I~61 ~OX:: ~on

['III III ~.6n 5051 5S)~

'ill ill. .t.';t}.x lX6~O D330
l~)l ,I II 'III ill "'1.-\ 15'no ~3.'30

F ~~ I 0' pSI F! - 10" psi

(I j - II ~ 10 P~I (1/ I = 0.2 x 10" psi

I ! )'11 0.25 (39)

where Land r dCl10tche longltlH.llI1dl and lransverse ply material directions, respectively.
Lsing these propettic~. four lamin,ltc~ .lIT considered. For each case, the layer properties
are given in eljn (39). and each layer is assumed to have the same thickness 0.005 in. while
the plate ~pan varies ,0 thatthc ratio uf ,pan-to-thickness. R = L217, takes on values 4,10.
20 and 50, respedivcly

In Table I. f) is dclined b\ cljn (,h) F hy cljn (25) and 1-:, is the average effective shear
stilTness defined by

(40)

which agrees with Rcis,ner '\1indlin's traditional FSOT if a shear correction factor of 5/6
is used . .·hcw.c!c means that the stacking sequencc IS not taken into account. while effective
means that the conventional shear correction factor 5 6 is used.

The single-layer phte is ohviously the representation of homogeneous case which also
includes the isotropic plate as a specific one The two 16-ply plates have the same value for
F:, in Tahle I: however. they have 'Ignificantly different values for the effective transverse
shear stiffness F. since the latlcr parameter takes stacking consequence into account, just
like the hending stiffne,s.

For cylindrical bending prohkm. till' lateral load is assumed to have the form

Iii \, /11

1'1 \ . II) (41 )

and the correspondln.," \)oundan L'(lndltlon, are

1\ (). II = 0 at v= O. L. (42)

The anahtic ~ulutlon I' rcadily ohulIlIcd and given as

and

(43)
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{!( \) (44)

il)
! ' ,!) h.\

i\ -+ /I =. I ( cos .
/ ," /

(45)

The actual distributIons III transHT'e shear Slr~li!1 and ,hear ,tress can be expressed as,
respectively

and

I \., )
!i .. 1 . 'IT.I '

!;c 1\)11 L) = ! (. )cos ( )H(;)
. . {' IT. , L I

(46)

(47)

The transverse shear stress resultant deri\ cd from eqn (47) can be shown to be precisely
the same as that obtained frum an c1cLsticity analySIS

For the classical solutIon in which the effect of tr~1 nsverse shear defonnation is neglected
[i.e. F approaches infinity in eqn (43)] the corresponding expression for the transverse
deflection at the midplane of the plate is gi\ell r'l\

" (\ I
IT\

(48)

IfF in eq n (4)) IS replaced h; r, dclined h\ eqn (4() l. thl' result for the traditional
FSDT is obtained WIth the shear Cl'rrl'ction factllll:qual III " 6. That is.

\', I \ I = ! J I (1 Y,1 n ( JI \lllt I) ('. JI.)n,n, ,I f /
(49)

In case that the shea! l')l"\el"tll)ll lalli)! IS ~h,uml'd 11,111' I Instead of 5:6. the corresponding
result is

!' ('~Ysin!T:\ \1 1 + /l
{l, . {

(. IT) ').,I .
(50)

The exact solutloll I'm such cylt lid I'Ical rrohkm 111\' d 'I Il1g a crllss-ply laminate proposed
by Pagano (196<)). although nOl as,llnpk as Ih,' ah')1 l' ,'XjlITSSI(IIlS. can be expressed as

I
~ R. ;"

) ,'Xl' (Ill::) I IT\11"1 \. :: I = \' ./ ( R" Sl11 L (51 )
~

\ .
I 1/1

and the exact value ill' Ihl' 1111dplan,' d:tlectioll (:Il 1)1 I·,
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I,hl" \1,dl'[;1I1,' c'ellter tran'lITSe dc/kclion comparison in per-
,,'III ern" I'or lhe sIngle [0] layer

., \ ~ II II"JIII

-. ; I') 7:;,7X 3,1'1 -'1,XO
ill II ;') -~~ ~4 03'1 - 5, 15
~II d II IO")4 IUI7 ! .76
';;11 Illil I \)1 001 -O3!
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! "lk' \lJdl'lanc' cc'IlILT 1r'"h\ChL' dc/kclton comparison in per
CL'I1\ ,'11'''' Ie), Ihe ['iO, O,l/O OL lamina Ie

Ii 'f"'i! \1',.,;

,+11/\ (,I 16,67 2411
II 1141 ~l)_')() (}.57 - X,XO

~l 1'.1" h ..2h l'i,' -2.65
'I 11111 1.06 - 03,' -OAS

II 1\ 11(\, II)
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(52)

The re<lder\ <Ire r:I'_Tred to P:lg:llll 1 I ll)(lL)) lor the full meaning of all terms involved in
el/ns (51) <llld (52)

All delkL'lIOIl npr,:ssiolls t<lke lhe ,<l111e sinusoidal form along the X direction, The
pereellt e!Tllr III the 11lidpl<llle tralb\erSe ddlcL'liOIl at the center of the plate for each
approach ell111p<lred Ilith the cX:lel \~i1ue given hy cl/n (52) are obtained, Namely,

\1
Ii

II,

II,
X I 00 ';;, (53)

\\ here thl' suh'l'llpt i rl'prcsellh l'~lch <lppro<lch U= p for the present refined theory; i = c
I'lli' CLI\SIC~i1 pl~lte thl'lll \ , i = II/ I'llI' Relssner Mindlin's traditional FSDT with a shear
cnrrectilln I~lctor III ~ ": ~lIld 1= ml I'llI' the traditional FSDT with a shear correction factor
011), Results arc pre,:nted ill T~lhlc,:: ~ lor each laminate defined in Table I.

Results for the Slllc~1c ortholroplc layer are shown in Table 2. The present refined
FSDT. ,I~ aillicipaled, !~I\es trallS\ersc ddkction results identical to those of Reissner­
Mindlin's tradlliona l f-~-;DT \\ith ~l ,he~lr correction factor equal to 5/6, Even for thick
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plates (R = 4). the present theory and the traditional FSDT arc very accurate. Results for
the 4-layer cross-ply laminate are shown in Table 3. The present theory is the most accurate
one of the results presented ~lI1d is within 3°/() of the exact transverse deflection for the thick
plate (R = 4). Results for the two In-layer cross-ply laminates are given in Tables 4 and 5
and again indicate the impru\'Cd accuracy for the present refined theory. The advantage of
present theory is more pronounced for thick plates where the transverse shear deformation
effect becomes more important. The reason is rather clear: the present refined theory
employs more aceurJte transverse shear strain energy expression.

It is assumed in the previous discussions that normalized distribution of through-the­
thickness transverse shear ,tress remains independent of the span-to-thickness ratio. Such
an assumption can also he justified hy Pagano's exact solution. All four laminates are
examined. yielding conclusi\ e resulb. Tvvo sets of the results are provided in Fig. 2. The
short- and long-dashed IlI1es represent the exact results for two values of the span-to­
thickness ratio (R = 4. 10. respectively), and the solid line. denoted by Present. stands for
the results predicted hy the present refined theory and determined using eqn (9) for both
values of R. The 10eJtion 111 the X direction is taken as x = LA. However, the location in
X direction makes no ddference in the transverse shear stress comparison except at the
middle span v\here the transverse stresses vanish identically.

It can he seen that even for thick plates (R = 4). the assumed distribution can be taken
as a good approximate e'(pression When the plate becomes moderately thick (R = 10),
only slight difference exish between the actual distribution and the assumed one. As the
plate becomes thinner and thinner (i.e. R - f.). the distribution will converge to the
assumed one. Results for thinner plates (e.g. R = 20, 50). which are not depicted for the
sake of clarity. fall het\vcen the curve for R = 10 and the present assumed result. The
assumption that thc normall/ed distl'ihution of through-the-thickness transverse shear stress
is independent of the span-to-thickness ratio, especially for the plates not too thick (R > 4)
can be concluded to be reasonable. Even for thick plate (R = 4). this assumption also leads
to a good acceptahle apprmimation Since thc present refined theory provides precisely
exact transverse shear stres, result as mentioned previously. Fig. 2 also represents the
comparisons hetween transverse shear stress distributions obtained by present theory and
the exact ones hy Pag,l!w's solution fur R = 4,10. respectively.

The transverse shear strain re'mlts using the present rdined theory, eqn (46), are also
compared with the C'\act values and the nominal uniform shear strains as illustrated in Figs
3 and 4. Transverse shear strain wmparisons for the single-layer case are shown in Fig. 3.
Cnlike in the traditional FSDT, the actual distrihutions of the transverse shear strain are
not uniform through the thickness. instead they take the same form as those of the transverse
shear stress for homogeneous plates (compare Fig. 3 with Fig. 2). Results for one 16-layer
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laminate dre ,11llW1l1l1 } Ig. 4 v\here the aClual distributions of shear strain exhibit enormous
diversity. Fnr dnisotrtl]1IC laminated plates. transverse shear strain is neither uniform nor
continuDus. It sho\\s d"tinct disl'(lIlllnuity at the dissimilar layer interfaces. Any attempts
to assullle It I' cllntin1l0tls. much Ie" 1II1lrDrm or evenly distributed. are expected to lead to
lIlaccuraue,.

The prc,cnt rdilll'lilheory. hlm~'vcr. rather successfully predicts transverse shear strain
distributIon,. a, wcll d, shcar ,trl", di,tnhutioll'l illustrated in Fig. 2. When the plate is
moderatelv lhic"- (R IOJ. sutliciently dceurate results are obtained by the present refined
theory. Re,ults 1'01' thlll plates (R 20..~O) approach those of the present theory and any
differences would not he' detecled II plotted. Even for thick plates (R = 4). the prediction
using the present theorY" aeceptahle

It i, vVldelv recogni/ed that lor thin plates (R > 50 or so). both transverse shear and
normal ,lrailb Cdn he nq.dected. and thus the application of classical plate theory generates
,atisfdClDry glohal plwilctlons. When the plates become moderately thick (R is between 10
and 50 nr '0'. the t1',11' sverse shea r dfect should be taken into consideration while the
trall'lverse Ilormdl stratll is still nCl!liglbk. As the plate thickness increases further, the
tran'H~rs.: normal strain hecomes more important and should be included in the formu­
lation. l,ually FSDT and its variants ar.: not appropriate for thick plates (R = 4 or so).
There arc attempts tl) t1111dify the lrdnS\erSe dellection form of FSDT to include transverse
normal,trall1.l'urcxall1r,le. assulllll1g 4uadratic form of transverse deflection in the thickness
directiun HO\\e\cr. the error introduced by assuming a linear through-the-thickness dis­
tribU1Jun uf inplanc di~placemcnt \\11Ich currcsponds to a linear through-the-thickness



63

distribution of the inplane stress IS more significant than the error introduced by assuming
inextensibility in the thickness direction. This conclusion can be easily verified using the
exact solution from Pagano but is not included herein.

Even though applied to thick plates in the previous discussion for the sake of compari­
son. the present refined FSDT should be confined only to moderately thick plates where
the transverse shear effect is imponant while the transverse normal stress can be assumed
to be negligible. In the domain of its validity. it has been shown to give accurate adequate
global response (transverse deflection) and local response (transverse shear stress and
transverse shear strain) prediction for the configuration considered in this paper. In
addition. the span-to-thickness ratio should be considered along with the wavelength of the
loading function. For a loading function with multiple halfwaves along the plate length,
the corresponding e(fccrire span-to-thickness should be related to the wavelength of the
load. The transverse shear effect is still siglllficant for a thin plate if subjected to a very
short-wave load.

SlM'\:L\R)

In the first pan of thIS paper. the first-order shear-deformation theory is re-examined
and it concludes that the nominal uniform transverse shear stress derived directly from the
displacement assumptions is actually the stress-weighted average shear strain through the
thickness based on the equivalent shear strain energy. The novel explanation enables the
present refined FSDT to account for variable distribution of transverse shear strain that
Reissner- Mindlin's traditional theory fails to do The contradiction in the sense of consti­
tutive relationship is therefore removed between the uniform transverse shear strain derived
from the displacement assumptillns and the variational shear stress obtained from the
equilibrium equation.

[n the second part. the validity ,)1' this refined theory is demonstrated by applying it to
solve cylindrical bending problenlo, e,f plates for which exact results are available. Based on
the assumption that normalized transverse shear stress distribution through the thickness
remains unchanged. the actual distnbutions of transverse shear stress and shear strain are
modelled which comply \\ith boundary conditions. equilibrium equation and constitutive
relationship pointwise. Effective tr~i11SVerSe shear stiffness and effective transverse shear
compliance of plates are proposed te, predict the global response (e.g. deflection. transverse
shear stress resultant and nominal uniform trans\erse shear strain. and likely vibration
frequency and buck ling load). On the other ham!. the local response parameter. such as
the interlaminar transverse shear stress and strain distributions. can also be obtained using
their respective distribution shape functions

The underlying explanation that the nO!1ltn~t1 uIllform transverse shear strain derived
directly from the displacement assumptions is the stress-weighted average shear strain
through thickness enables the present refIned theor\ to succeed not only globally but also
locally for the plane-strain bending problems. Howe\er. it should be mentioned that for
general plate bending problems. the unchanged stress distributIOn shape assumption may
not hold and further research work j, required
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